Low voltage ride-through capability improvement of DFIG-based wind turbines under unbalanced voltage dips
نویسندگان
چکیده
This paper proposes a competent and effective scheme to enhance the ride-through capability of DFIGbased wind turbines under unbalanced voltage dip conditions. The proposed method is realized through joint use of the rotor-side converter control and a three-phase stator damping resistor (SDR) placed in series with the stator windings. By means of an asymmetrical SDR idea, during the unbalanced voltage dip the SDR resistors are activated only in phase(s) experiencing low voltage. Then, the rotor current is controlled such that no unbalance voltage appears on the stator voltage. The proposed ride-through approach limits the peak values of the rotor inrush current, electromagnetic torque and DFIG transient response at the times of occurrence and clearing the fault. It also suppresses fluctuation of the electromagnetic torque and DFIG transient response appeared during unbalanced voltage dips due to negative sequence component. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Unbalanced-Grid-Fault Ride-Through Control for a Doubly Fed Induction Generator Wind Turbine with Series Grid-Side Converter
The grid codes now require doubly fed induction generator (DFIG) wind turbines having the “low voltage ride-through (LVRT)” capability. However, a traditional DFIG with a partially rated back-to-back converter has inherent difficulties to ride through the grid faults, especially for the unbalanced grid faults. Modifications to the traditional DFIG configuration for ride-through have become nece...
متن کاملLow Voltage Ride Through Enhancement Based on Improved Direct Power Control of DFIG under Unbalanced and Harmonically Distorted Grid Voltage
In the conventional structure of the wind turbines along with the doubly-fed induction generator (DFIG), the stator is directly connected to the power grid. Therefore, voltage changes in the grid result in severe transient conditions in the stator and rotor. In cases where the changes are severe, the generator will be disconnected from the grid and consequently the grid stability will be attenu...
متن کاملتحلیل و بهبود قابلیت ایستادگی توربین بادی با ژنراتور القایی دو سو تغذیه در برابر افتادگی نامتقارن ولتاژ
DFIG based wind turbines (WTs) are very sensitive to grid voltage dips. This is because the grid voltage dips imposed at the connection point of the DFIG to the grid induce large voltages in the rotor windings, resulting in high rotor current. According to high penetration of DFIG based WTs, it is important that the WTs remain connected to the grid during the voltage dips and improve the grid s...
متن کاملGA-Based Optimal LQR Controller to Improve LVRT Capability of DFIG Wind Turbines
Nowadays, the doubly-fed induction generators (DFIGs) based wind turbines (WTs) are the dominant type of WTs connected to grid. Traditionally the back-to-back converters are used to control the DFIGs. In this paper, an Indirect Matrix Converter (IMC) is proposed to control the generator. Compared with back-to-back converters, IMCs have numerous advantages such as: higher level of robustness, re...
متن کاملImproved Control Strategy for Low Voltage Ride Through Capability of DFIG with Grid Code Requirements
This paper deals with a protection and control strategy to enhance the low voltage ride through capability of a wind turbine driven doubly fed induction generator (DFIG). As the wind power penetration continues to increase, wind turbines are required to provide Low Voltage Ride-Through (LVRT) capability. Crowbars are commonly used to protect the power converters during voltage dips and their ma...
متن کامل